Adjacent vertex strongly distinguishing total coloring of graphs with lower average degree
نویسندگان
چکیده
منابع مشابه
Adjacent Vertex Distinguishing Total Coloring of Graphs with Lower Average Degree
An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing total coloring of G is denoted by χ′′ a(G). Let mad(G) and ∆(G) denote the maximum average degree and the maximum degree of a graph G, respectivel...
متن کاملAdjacent vertex-distinguishing edge coloring of graphs
An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let mad(G) and ∆(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with ∆(G) ≥ 5 and mad(G) < 3− 2 ∆ can be avd-colored with ∆(G) + 1 col...
متن کاملadjacent vertex distinguishing acyclic edge coloring of the cartesian product of graphs
let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors. we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$. we also determine exact value of this parameter for the cartesian product of ...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2023
ISSN: ['1234-3099', '2083-5892']
DOI: https://doi.org/10.7151/dmgt.2518